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These are notes from my talk in the symplectic geometry seminar in the working
group of Klaus Mohnke, Chris Wendl, and Thomas Walpuski in Berlin. In this talk,
I explain some interesting properties of the symplectic capacities that appeared in
the paper by McDuff and Siegel, Symplectic capacities, unperturbed curves, and
convex toric domains, [4].

1 Set-up

• (M,ω) denotes a closed symplectic manifold of dimension 2n which is semi-
positive, i.e

∀A ∈ π2(M) with ω(A) > 0 and c1(A) ≥ 3− n =⇒ c1(A) ≥ 0.

• For p ∈ M , Dp denotes a local co-dimension 2 symplectic sub-manifold

•

J (M,Dp) :=

{
J :


J is ω-compatible almost complex structure on M

J is integrable near p

Dp is J-holomorphic

}

2 Rational curves with local tangency constraints

Let J ∈ J (M,Dp) and u : S2 → (M,J) be a J-holomorphic curve with u(z) = p
for some z ∈ S2. For holomorphic chart f and holomorphic function g describing
Dp consider the following diagram.
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Definition 2.1. Let k ∈ Z≥1, u satisfies the tangency constraint ≪ T k−1p ≫ at z
w.r.t to D if

di(g ◦ u ◦ f)
diz

|z=0 = 0,

for all i = 0, 1, . . . , k − 1. Ord(u, z,D):= the maximal such k. For details see
Cieliebak-Mohnke [2].

Remark 2.2. For k = 2, ≪ T 1p ≫ means

du(TzS
2) ⊂ TpD (co-dim 2 subspace of TpM).

Definition 2.3. Let k ∈ Z≥1, A ∈ H2(M,Z) and J ∈ J (M,Dp). Define

MJ
M,A ≪ T k−1p ≫:=

{
(u, z) :


u : S2 → M

du ◦ i = J ◦ du
u satisfies ≪ T k−1p ≫ at z0

u∗[S
2] = A

}
/ ∼

(u1, z1) ∼ (u2, z2) if and only if (u1, z1) = (u2 ◦ ϕ, ϕ−1(z2)) for some ϕ ∈ Aut(S2).

M̂J
M,A ≪ T k−1p ≫ denotes the parameterized moduli space.

How does the Gromov-compactness of the above moduli space look like? The
following lemma of Cieliebak and Mohnke answers it.

Lemma 2.4. (Cieliebak-Mohnke [2], special case of lemma 7.2) Let un ∈ M̂J
M,A ≪

T k−1p ≫ be a sequence de-generates to a nodal configuration u in the Gromov
topology. Suppose the constrained marked point lies on a ghost component ū in u.
Let {ui}i=1,2,...q be the non-constant components of u that are attached to ū directly
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or via some ghost components. Let zi be the special point of ui that realize the node
with ū or with a ghost compment attached to ū. Then

q∑
i=1

Ord(ui, zi, Dp) ≥ k.

In the picture, the red spheres are the ghosts that shares a nod with the
ghost(deep red) that inherits the constrained marked point.

Curves with local tangency constraints leads to a definition of a variant of
Gromov-Witten invariants:

Theorem 2.5. (Cieliebak-Mohnke [2], 2007, special case)
Suppose (M,ω) is closed and semi-positive.

• For generic J ∈ J (M,Dp), the moduli space

MJ
M,A ≪ T c1(A)−2p ≫

is a oriented compact smooth zero-dimensional manifold.

• The signed count

NM,A ≪ T c1(A)−2p ≫:= #MJ
M,A ≪ T c1(A)−2p ≫

does not depend on the choice of p,Dp, and J .

Theorem 2.6. (Cieliebak-Mohnke [3], 2014)

NCPn,[CP1] ≪ T n−1p ≫= (n− 1)!.

Theorem 2.7. (McDuff-Siegel, 2019)

NCP2,d[CP1] ≪ T 3d−2p ≫≠ 0

and can be computed using the algorithm of Göttsche–Pandharipande ( [5], Theorem
3.6).
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3 Liouville domains

Definition 3.1. (Liouville domain) A Liouville domain is a triple (W,ω, λ) where

• (W,ω) is a compact symplectic manifold

• ω = dλ

• ∂W is positive, i.e X defined by ω(X, .) = λ point outward along ∂W .

By the symplectic collar neighborhood theorem, ω looks like d(erλ) on the dark
region.

By attaching the half symplectic cylinder ([0,∞), d(erλ)) to the configuration
above we get
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The above configuration is called the symplectic completion of W . We will denote
it by Ŵ . The horizontal vector field R dual to the λ, shown below, is called the

Reeb vector field of λ.

Definition 3.2. (Admissible almost complex structures) An almost complex struc-

ture J on Ŵ is admissible if
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• it is compatible with the symplectic form

• it is r-translation invariant in a neighborhood of the cylindrical end

• it preserves ξ := ker(λ) and maps ∂r to the Reeb vector field Rα

Definition 3.3. Let p ∈ Int(W ), define

J (Ŵ ,Dp) :=

{
J :


J is admissible a.c.s on Ŵ

J is integrable near p

Dp is J-holomorphic

}

Definition 3.4. Let Γ := (γ1, γ2, . . . , γl) be a tuple of closed Reeb orbits on ∂W .

Let k ∈ Z≥1, and J ∈ J(Ŵ ,D). Define

MJ
W (Γ) ≪ T k−1p ≫:=

{
(u, z0) :


u : S2 \ {z1, . . . , zl} → Ŵ

du ◦ i = J ◦ du
u satisfies ≪ T k−1p ≫ at z0

u is asymptotic to Γ

}

This moduli space contains curves that look like:
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Definition 3.5. (Compactification of MJ
W (Γ) ≪ T k−1p ≫)

By the Cieliebak-Mohnke lemma above, we define

M
J

W (Γ) ≪ T k−1p ≫:= MJ
W (Γ) ≪ T k−1p ≫

⋃
{buildings that look like.. shown below}

4 McDuff-Siegel Capacities

Definition 4.1. (Symplectic Capacity) Let C denotes a class of symplectic mani-
folds. A symplectic capacity is a pair (C, α), where α is a function

α : C → [0,∞]

such that:

• Scaling: For any a > 0, α(M,aω) = aα(M,ω).

• Symplectic embedding monotonicity: If there is an quidimensional sym-
plectic embedding (possibly with some extra conditions) i : (M1, ω1) → (M2, ω2),
then

α(M1, ω1) ≤ α(M2, ω2).

• Non-triviality: 0 < α(B2n(1), ω0) and

0 < α(B2(1)× C(n−1), ω0) < ∞.

Definition 4.2. (McDuff-Siegel Capacities [4], 2022) Let (W,λ) be a non-degenerated
Liouville domain. Let Dp be a smooth local symplectic divisor passing through
p ∈ IntX. For k ∈ N, define

7



MS1
k(W ) := sup

J∈J (Ŵ ,Dp)

inf
γ

period(γ) ∈ [0,∞]

where the infimum is taken over all periodic Reeb orbits γ for which MJ
W (γ) ≪

T k−1p ≫≠ ∅. Because the symplectic structure on W is exact, by stokes’ theorem
the infimum above is taken over the energy of asymptotic J-holomorphic disks in
Ŵ :

Theorem 4.3. (McDuff-Siegel [4], 2022) For all k ∈ N, the number MS1
k(W ) does

not depend on the choice of (p,Dp) and J , and it is a symplectomorphism invariant.
Moreover,

MS1
1(W ) ≤ MS1

2(W ) ≤ MS1
3(W ) ≤ . . .

Proof : Let (p,Dp) and (p′, Dp′) be two choices. Choose a symplectomorphism.
ϕ : W → W such that ϕ(p) = p′ and ϕ(D) = D′. Then we have bijections

ϕ∗ : J (Ŵ ,D′
p′) → J (Ŵ ,Dp) : J → (dϕ)−1 ◦ J ◦ dϕ

and

ϕ : MJ
W (γ) ≪ T k−1p′ ≫→ MJ

W (γ) ≪ T k−1p ≫: u → ϕ−1 ◦ u.

Moreover, the monotonicity w.r.t k follows from

MJ
W (γ) ≪ T k−2p ≫⊆ MJ

W (γ) ≪ T k−1p ≫ .
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Definition 4.4. (McDuff-Siegel Capacities [4], 2022) Let (W,λ) be a Liouville do-
main. Let Dp be a smooth local symplectic divisor passing through p ∈ IntX. For
m, k ∈ N, define

MSm
k (W ) := sup

J∈J (Ŵ ,Dp)

inf
Γ

∑
γ∈Γ

period(γ) ∈ [0,∞]

where the infimum is taken over all tuples closed Reeb orbits Γ with #Γ ≤ m for

whichM
J

W (Γ) ≪ T k−1p ≫̸= ∅. The infimum is taken over the energy of holomorphic
buildings that look like:

Definition 4.5. (McDuff-Siegel Capacities [4], 2022) Let (W,λ) be a Liouville do-
main. Let D be a smooth local symplectic divisor passing through p ∈ IntX. For
k ∈ N, define

MSk(W ) := sup
J∈J (Ŵ ,Dp)

inf
Γ

∑
γ∈Γ

period(γ) ∈ [0,∞]

where the infimum is taken over all tuples closed Reeb orbits Γ for which M
J

W (Γ) ≪
T k−1p ≫≠ ∅. The infimum is taken over the energy of holomorphic buildings that
look like:
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Definition 4.6. (McDuff-Siegel Capacities [4], 2022) Let (M,ω) be any symplectic
manifold. For k ∈ N, define

MSk(M,ω) := sup
W

MSk(W ) ∈ [0,∞]

where the sup. is is taken over all Liouville domains (W,λ) which can be symplec-
tically embedded into M .

Theorem 4.7. (McDuff-Siegel [4], 2022) For all k ∈ N, the number MSk(M,ω)
does not depend on the choice of (p,Dp) and J , and it is a symplectomorphism
invariant. Moreover,

MS1(M,ω) ≤ MS2(M,ω) ≤ MS3(M,ω) ≤ . . .

Theorem 4.8. (McDuff-Siegel Capacities [4], 2022)

• Scaling: For any α > 0, MSk(M,αω) = αMSk(M,ω) for all k ∈ N.

• Subadditivity: MSk1+k2(M,ω) ≤ MSk1(M,ω) + MSk2(M,ω).

• Symplectic embedding monotonicity: If there is an quidimensional sym-
plectic embedding i : (M1, ω1) → (M2, ω2), then MSk(M1, ω1) ≤ MSk(M2, ω2)
for all k ∈ N.

• Closed curve upper bound: (M,ω) is a closed semipositive symplectic
manifold satisfying NM,A ≪ T c1(A)−2p ≫≠ 0 for some A ∈ H2(M,Z), then
MSc1(A)−1(M,ω) ≤ ω(A).

• Stabilization: For certain Liouville domains W we have

MSk(W × Cm) = MSk(W )

for every k,m ∈ N. For example, this holds when W is a four-dimensional
convex toric domain.

Remark 4.9. If there is no closed Reeb orbit on the boundary of Liouville domain
W , then

MSk(W ) = ∞
for all k ∈ N. On the other hand, if W admits a symplectic embdedding into a
closed semipositive symplectic manifold M satisfying NM,A ≪ T c1(A)−2p ≫≠ 0 for
some A ∈ H2(M,Z). Then
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MSc1(A)−1(W ) ≤ MSc1(A)−1(M,ω) ≤ [ω].A < ∞.

Weinstein conjecture is true for W? For example

NCPn,[CP1] ≪ T n−1p ≫= (n− 1)!.

So
MSn(CPn, ωFS) ≤ π

Proof. (Symplectic embedding monotonicity proof sketch)

• Suppose we have a symplectic embedding i : (W1, λ1) → (W2, λ2).

• Choose Dp ⊂ Int(W1), then i(Dp) is a local divisor in W2.

• Given J ∈ J (Ŵ1, Dp)

• Let Jn ∈ J (Ŵ2, i(Dp)) be realizing neck-stretching along i(∂W1) and restricts
to i∗J on i(W1). See the figure below.

• Since MSk(W2) < ∞, so M
Jn

W2
(Γn) ≪ T k−1p ≫̸= ∅. See the figure below:
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• Since the the boundary ∂W2 is non-degenerated and MSk(W2) < ∞, #Γn is
bounded and becomes constant eventually.

• Let Γn = Γ, then
∑

γ∈Γ period(γ) ≤ MSk(W2)

• n → ∞ yields a configuration in M
Jn

W1
(Γ′) ≪ T k−1p ≫ by Cieliebak-Mohnke

lemma above. The energy of this building is at most
∑

γ∈Γ period(γ).

Proof. (Closed curve upper bound: proof sketch)

• Let W ⊆ (M,ω) be an embedded Liouville domain

• Choose Dp ⊂ Int(W )

• Fix J ∈ J (Ŵ ,Dp), let Jn ∈ J (M,ω) be realizing neck-stretching along ∂W
and restricts to J on W . See the figure below:
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• Since NM,A ≪ T c1(A)−2p ≫≠ 0, so MJn
M ≪ T c1(A)−2p ≫̸= ∅.

• n → ∞ yields a configuration in M
Jn

W (Γ) ≪ T c(A)−2p ≫ by Cieliebak-Mohnke
lemma above. The energy of this building is at most

∑
γ∈Γ period(γ).

• Hence
MSk(W ) ≤ ω(A).

• Hence
MSk(M,ω) = sup

W⊆M
MSk(W ) ≤ ω(A).
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5 Applications to stabilize embedding problems

Theorem 5.1. (McDuff-Siegel [4], 2022) Under some assumptions on Liouville
domains W we have

MSk(W × Cm) = MSk(W )

for every m, k ∈ N. For example, this holds when W is a four-dimensional convex
toric domain.

Question 5.2. (Stabilize embedding problem) Let W1 and W2 be two Liouville
domains. When does there exist a symplectic embedding

ϕ : W1 × Cm → W2 × Cm?

If such an embedding exists, then MSk(W1) ≤ MSk(W2) for all k ∈ N. This gives
numerical obstructions (sometimes sharp) to the existence of such embeddings.

For an example below:

Example 5.3. (McDuff-Siegel [4], 2022) Let 1 ≤ a < ∞,

E(1, a) := {(z1, z2) ∈ C2 : π|z1|2 + π
|z2|2

a
≤ 1}

For 1 ≥ a ≤ 3/2,

MSk(E(1, a)) =


1 + la, for k = 1 + 3l with l ≥ 0

a+ la, for k = 2 + 3l with l ≥ 0

2 + la, for k = 3 + 3l with l ≥ 0.

For 3/2 ≤ a,

MSk(E(1, a)) =


k, for 1 ≤ k ≤ ⌊a⌋
a+ l, for k = ⌈a⌉+ 2l with l ≥ 0

⌈a⌉+ l, for k = ⌈a⌉+ 2l + 1 with l ≥ 0.

There exists a symplectic embedding ϕ : E(1, 7)×Cm → µE(1, 2)×Cm if and only
if µ ≥ 7

4
. This lower bound is sharp.

Proposition 5.4. (McDuff-Siegel [4], 2022)(Stabilization lower bound)
For any Liouville domain W , we have

MSk(W ) ≤ MSk(W × Cm)

for all k,m ≥ 1.
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Remark 5.5. It is enough to prove that for each fixed k

MSk(W ) ≤ MSk(W × B2(c))

sufficiently large c > 0. The W × B2(c) is not smooth, it has singularities at
∂W × ∂D2. We need to smooth it out to make a Liouville domain . The idea of
McDuff and Siegel is to take a nice cut of the picture to left via a Hamiltonian
function to obtain picture to the right. See [4], Lemma 3.6.2, for details.

The following theorem ensures the existence of a nice smoothing.

Theorem 5.6. (McDuff-Siegel [4],Lemma 3.6.2, 2022) Let (W,λ) be Liouville do-
main. For any ϵ, c > 0, there is a subdomain with smooth boundary W ×̃B2(c) ⊂
W × B2(c), see the figure above, such that we have

• the Liouville vector field Vλ+Vλstd
is s outwardly transverse along ∂(W ×̃B2(c))

• W × {0} ⊂ W ×̃B2(c) and the Reeb vector field of ∂(W ×̃B2(c)) is tangent to
∂W × {0}.

• any closed Reeb orbit of the contact form λ + λstd|∂(W ×̃B2(c)) with period less
than c− ϵ is entirely contained in ∂W × {0}.

Proof. (Stabilization lower bound proof sketch)

• We want to prove that for every c > 0 large enough

MSk(W ) ≤ MSk(W × B2(c))

• Since W ×̃B2(c) ⊂ W × B2(c), it is enough to prove for every large c > 0

MSk(W ) ≤ MSk(W ×̃B2(c))
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• We are done if we found a J ∈ J ( ̂W ×̃B2(c)), Dp̃) such that for every tuple Γ
for which

M
J

W ×̃B2(c)(Γ) ≪ T k−1p̃ ≫≠ ∅

we have ∑
γ∈Γ

Period(γ) ≥ MSk(W ).

• Choose JW ∈ J (Ŵ ,Dp) such that for every tuple Γ for which

M
J

W (Γ) ≪ T k−1p ≫≠ ∅

we have ∑
γ∈Γ

Period(γ) ≥ MSk(W ).

Such JW exists by definition of MSk(W ) and the fact that the sum of periods
of finite tuples of Reeb orbits form a discrete set on the real line R.

• Set p̃ = (p, 0) ∈ W ×̃B2(c) and the divisor D̃ := Dp × B2(δ). Choose J ∈
J ( ̂W ×̃B2(c)), Dp̃) such that J |Ŵ×{0} = JW .

• Choose c > MSk(W ). For small ϵ > 0 we have

c− ϵ > MSk(W ).

• Let C ∈ M
J

Ŵ ×̃B2(c)(Γ) ≪ T k−1p ≫. If some component u of C has an end that
is not asymptotic to a Reeb orbit in ∂W ×{0}, this component has energy at
least c by the third bullet point in the theorem 5.6 above . Thus, the energy
of C is greater than c− ϵ > MSk(W ).

• If every component u of C has all ends asymptotic to Reeb orbits in ∂W×{0},
the the whole building lies in Ŵ and R× ∂W .

• So C ∈ M
J

Ŵ (Γ) ≪ T k−1p ≫. By the choice of J in the above bullet point,
the energy of C is greater than MSk(W ).

The stabilization lower bound holds for W if the value MSk(W ) is suported by a
nice moduli space. The following makes it precise:
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Theorem 5.7. (McDuff-Siegel [4], 2022) Let W be a Liouville domain. Sup-
pose there exist a tuple of closed Reeb orbits Γ and a relative homology class A ∈
H2(W,Γ,Z) such that:

•
∑

γ∈Γ Period(γ) = MSk(W )

• MJW
W (Γ) ≪ T k−1p ≫ is of index zero and regular for some J ∈ JW(Ŵ ,Dp).

• The signed count

#MJW
W (Γ) ≪ T k−1p ≫

does not depend on the choice of generic J ∈ J (Ŵ ,Dp),

then
MSk(W ) ≥ MSk(W × Cm).

Proof. (Rough Idea)

• It is enough to prove that for every c > 0

MSk(W ) ≥ MSk(W ×̃B2(c)).

• Choose Jext ∈ J ( ̂W ×̃B2(c)), Dp̃) such that J |Ŵ×{0} = JW .

• By construction of ̂W ×̃B2(c)), the curves inMJW
W (Γ) ≪ T k−1p ≫ are also Jext-

holomorphic, index zero and regular. The regularity survives after extending
JW requires some work to be proved. The signed count

#MJext
̂W ×̃B2(c))

(Γ) ≪ T k−1p ≫

does not depend on the choice of regular J ∈ J ( ̂W ×̃B2(c)), Dp). Here one
needs to appeal to the intersection theory in Moreno-Siefring [1]

• So for generic J ∈ J ( ̂W ×̃B2(c)), Dp̃) there are curves in MJ
̂W ×̃B2(c))

(Γ) ≪
T k−1p ≫, so

MSk(W ) =
∑
γ∈Γ

Period(γ) ≥ MSk(W ×̃B2(c)).
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